Remove 2018 Remove Cost Remove Li-ion Remove Universal
article thumbnail

Roskill: Niobium industry looking for a future beyond steel; Li-ion batteries a possibility

Green Car Congress

However, the spike in vanadium prices (ferrovanadium prices increased by about 200% in 2018) caused Chinese mills to substitute niobium to vanadium and Chinese niobium imports increased 30% year-on-year both in 2018 and 2019. was published in the journal Nature in 2018. The paper (Griffith et al. ) Griffith et al. Griffith, K.J.,

Li-ion 378
article thumbnail

Researchers in Belgium develop new class of solid composite electrolytes for Li-ion batteries: Eutectogels

Green Car Congress

Researchers at Hasselt University in Belgium are proposing a new class of solid composite electrolytes (SCEs) for Li-ion batteries: deep eutectic solvent (DES)–silica composites. These ETGs can be easily processed—potentially at lower costs—than ionic-liquid-based composite electrolytes. Joos et al. …

Li-ion 218
article thumbnail

ECS announces 2023-2024 ECS Toyota Young Investigator Fellowship recipients

Green Car Congress

Yaocai Bai and Yuzhang Li have received the 2023–2024 ECS Toyota Young Investigator Fellowships for projects in green energy technology. Dr. Bai received his BS in Materials Chemistry from the University of Science and Technology of China in 2010 and MS in Materials Science in 2012 from King Abdullah University of Science and Technology.

Toyota 270
article thumbnail

Tin-based nanoplates as promising anode materials for high-capacity Li-ion batteries

Green Car Congress

Researchers from the Harbin Institute of Technology, with colleagues from the Beijing University of Technology and the University of Wisconsin Milwaukee, have synthesized tin chalcogenide (SnSe 0.5 S 0.5 ) nanoplates for use as Li-ion anodes. Electrochemical performance of a Li-ion full cell. (a)

Li-ion 186
article thumbnail

U Akron team develops Mn-based high performance anode for Li-ion batteries

Green Car Congress

Researchers at the University of Akron have developed hierarchical porous Mn 3 O 4 /C nanospheres as anode materials for Li-ion batteries. mA/g), excellent ratability (425 mAh/g at 4 A/g), and extremely long cycle life (no significant capacity fading after 3000 cycles at 4A/g) as an anode in a Li-ion battery.

Li-ion 199
article thumbnail

UH, Toyota researchers develop new cathode and electrolyte for high-power Mg battery rivaling Li-ion

Green Car Congress

Magnesium batteries have long been considered a potentially safer and less expensive alternative to lithium-ion batteries, but previous versions have been severely limited in the power they delivered. Magnesium ions hold twice the charge of lithium, while having a similar ionic radius. —Dong et al. Neither approach is practical.

Li-ion 373
article thumbnail

New group of materials could lead to faster-charging Li-ion batteries

Green Car Congress

Researchers from the University of Cambridge, with colleagues from Argonne National Laboratory in the US and Diamond Light Source, Harwell Science and Innovation Campus, UK, have identified a group of materials—niobium tungsten oxides—that could be used to make even higher power batteries. Griffith et al.

Li-ion 247