Remove Charging Remove Li-ion Remove Lithium Ion Remove Recharge
article thumbnail

Researchers use carbon-based anodes with “bumpy” surfaces for Li-ion batteries that last longer in extreme cold

Green Car Congress

The resulting 12-sided carbon nanospheres had “bumpy” surfaces that demonstrated excellent electrical charge transfer capabilities. The resulting 12-sided carbon nanospheres had bumpy surfaces that demonstrated excellent electrical charge transfer capabilities. capacity retention at 0.1 A g –1 as the temperature drops to ?20

Li-ion 418
article thumbnail

UCSD team develops new disordered rock salt anode for fast-charging, safer lithium-ion batteries

Green Car Congress

Researchers at UC San Diego, with their colleagues at other institutions, have developed a new anode material that enables lithium-ion batteries to be safely recharged within minutes for thousands of cycles. volts versus a Li/Li + reference electrode. other intercalation anode candidates (Li 3 VO 4 and LiV 0.5

article thumbnail

Novel copolymer binder extends the life of lithium-ion batteries

Green Car Congress

One of the major causes for the drop in capacity over time in Li-ion batteries is the degradation of the widely used graphite anodes. One of the major challenges for graphite anodes is the exfoliation of the graphite framework on deep cycling at a fast current rate. —Prof. 0c02742.

article thumbnail

Georgia Tech researchers develop aluminum-foil-based anodes for all-solid-state Li-ion batteries

Green Car Congress

Woodruff School of Mechanical Engineering and the School of Materials Science and Engineering, is using an aluminum-foil-based anode in a solid-state Li-ion battery to create batteries with higher energy density and greater stability. negative electrode is combined with a Li 6 PS 5 Cl solid-state electrolyte and a LiNi 0.6

Li-ion 370
article thumbnail

IIT, Argonne team designs Li2O-based Li-air battery with solid electrolyte; four-electron reaction for higher energy density

Green Car Congress

Researchers at the Illinois Institute of Technology (IIT) and US Department of Energy’s (DOE) Argonne National Laboratory have developed a lithium-air battery with a solid electrolyte. The battery is rechargeable for 1000 cycles with a low polarization gap and can operate at high rates. Image by Argonne National Laboratory.)

Li-ion 418
article thumbnail

UCR researchers find commercial fast-charging damages EV batteries, propose new internal-resistance-based technique

Green Car Congress

Commercial fast-charging stations subject electric car batteries to high temperatures and high resistance that can cause them to crack, leak, and lose their storage capacity, according to researchers at the University of California, Riverside (UCR) in a new open-access study published in the journal Energy Storage. Ozkan Lab/UCR).

article thumbnail

Toshiba, Sojitz and CBMM partner to commercialize next-generation Li-ion batteries with NTO anodes

Green Car Congress

Toshiba Corporation, Sojitz Corporation, and CBMM have entered into a joint development agreement for the commercialization of next generation lithium-ion batteries using niobium titanium oxide (NTO) as the anode material. One of the major requirements for rechargeable battery development is greater energy density and faster charging.

Li-ion 376