Remove Carbon Remove Li-ion Remove Lithium Air Remove Recharge
article thumbnail

Researchers Develop Solid-State, Rechargeable Lithium-Air Battery; Potential to Exceed 1,000 Wh/kg

Green Car Congress

Sample UDRI solid-state, rechargeable lithium-air batteries, and Dr. Binod Kumar. Engineers at the University of Dayton Research Institute (UDRI) have developed a solid-state, rechargeable lithium-air battery. Click to enlarge. Earlier post.). Binod Kumar, leader of UDRI’s electrochemical power group.

article thumbnail

UK Researchers Developing Rechargeable Lithium-Air Battery; Up to 10X the Capacity of Current Li-ion Cells

Green Car Congress

Oxygen drawn from the air reacts within the porous carbon to release the electrical charge in this lithium-air battery. Researchers in the UK are developing a rechargeable lithium-air battery that could deliver a ten-fold increase in energy capacity compared to that of currently available lithium-ion cells.

article thumbnail

Researchers directly visualize formation and disappearance of Li-O2 reaction products; insights to support development of rechargeable lithium-air batteries

Green Car Congress

During discharge and charge in UHV, Li ions reversibly intercalate/de-intercalate into/from the Li x V 2 O 5 electrode. During discharge, Li ions meet with reduced oxygen on the surface of the Li x V 2 O 5 electrode forming Li 2 O 2 , which is decomposed upon recharge. The rechargeable Li?air

article thumbnail

AIST Developing New Lithium-Air Battery; Lithium Fuel Cell

Green Car Congress

Long-term discharge curve of the newly developed lithium-air cell. Researchers at Japan’s AIST (National Institute of Advanced Industrial Science and Technology) are developing a lithium-air cell with a new structure (a set of three different electrolytes) to avoid degradation and performance problems of conventional lithium-air cells.

article thumbnail

MIT electrolyte enables ultra-high voltage Ni-rich cathodes in Li-metal batteries

Green Car Congress

The electrolyte not only suppresses side reactions, stress-corrosion cracking, transition-metal dissolution and impedance growth on the cathode side, but also enables highly reversible Li metal stripping and plating on the lithium-metal anode (LMA), leading to a compact morphology and low pulverization.

Ni-Li 284
article thumbnail

Liox Power reports first operation of a Li-air battery with a straight-chain alkyl amide electrolyte solvent; new direction for Li-air research

Green Car Congress

Researchers at startup Liox Power, a California-based company developing rechargeable Li-air batteries, have demonstrated for the first time the operation of a lithium-air battery with a Li anode in a straight-chain alkyl amide electrolyte solvent (N,N-dimethylacetamide (DMA)/lithium nitrate (LiNO 3 )).

Li-ion 353
article thumbnail

IBM Almaden Lab Exploring Lithium-Air Batteries for Next-Generation Energy Storage

Green Car Congress

General schematic of a lithium-air battery. The team plans to explore rechargeable Lithium-Air systems, which could offer 10 times the energy capacity of lithium-ion systems. Lithium-ion rechargeable (secondary) batteries are based on a pair of intercalation electrodes.