Remove Battery Remove MIT Remove Recharge Remove Sodium
article thumbnail

New MIT metal-mesh membrane could solve longstanding problems with liquid metal displacement batteries; inexpensive grid power storage

Green Car Congress

A new metal mesh membrane developed by researchers at MIT could advance the use of the Na–NiCl 2 displacement battery, which has eluded widespread adoption owing to the fragility of the ?"-Al The results could make possible a whole family of inexpensive and durable materials practical for large-scale rechargeable batteries.

MIT 150
article thumbnail

Researchers devise electrode architectures to prevent dendrite formation in solid-state batteries

Green Car Congress

Interest in higher energy-density batteries that pair alkali metal electrodes with solid electrolytes is high; however, such batteries have been plagued by a tendency for dendrites to form on one of the electrodes, eventually bridging the electrolyte and shorting out the battery cell.

Batteries 199
article thumbnail

U Waterloo team identifies key reaction in sodium-air batteries; implications for improving Li-air

Green Car Congress

Chemists at the University of Waterloo have identified the key reaction that takes place in sodium-air batteries. Understanding how sodium-oxygen batteries work has implications for developing the more powerful lithium-oxygen battery, which has been proposed by some as the “holy grail” of electrochemical energy storage.

Sodium 150
article thumbnail

MIT-led team devises new approach to designing solid ion conductors; implications for high-energy solid-state batteries

Green Car Congress

Researchers led by a team from MIT, with colleagues from Oak Ridge National Laboratory (ORNL), BMW Group, and Tokyo Institute of Technology have developed a fundamentally new approach to alter ion mobility and stability against oxidation of lithium ion conductors—a key component of rechargeable batteries—using lattice dynamics.

MIT 170
article thumbnail

MIT and Moscow State collaborating on advanced batteries, metal-air batteries and reversible fuel/electrolysis cells

Green Car Congress

Researchers at the Skoltech Center for Electrochemical Energy Storage (CEES), a partnership between the MIT Materials Processing Center and Lomonosov Moscow State University, are focusing on the development of higher capacity batteries. Advanced Li-ion and multivalent ion batteries. Chiang, MIT colleague W.

MIT 150
article thumbnail

Sadoway and MIT team demonstrate calcium-metal-based liquid metal battery

Green Car Congress

MIT professor Donald Sadoway and his team have demonstrated a long-cycle-life calcium-metal-based liquid-metal rechargeable battery for grid-scale energy storage, overcoming the problems that have precluded the use of the element: its high melting temperature, high reactivity and unfavorably high solubility in molten salts.