Remove Articles Remove Batteries Remove Charging Remove Lithium Sulfur
article thumbnail

New doped graphene cathode with MoS2 loading enables highly stable Li-sulfur battery

Green Car Congress

A team at the University of Manchester (UK) has developed a doped graphene cathode for highly stable lithium-sulfur batteries. In an open access paper in the Nature journal Communications Chemistry , they report 100% charge capacity of Li-S batteries using the cathode material with 500 charge/discharge cycles at 0.5

article thumbnail

Log9 Materials and Zeta Energy partner for advanced battery systems – ET Auto

Baua Electric

Given India’s dependence on 100% imported lithium-ion cells for electric vehicle batteries, there exists a compelling drive to cultivate indigenous cell and battery manufacturing capacities to meet the burgeoning demands. Log9 has an impressive record of bringing world-leading battery technology to market.

article thumbnail

Berkeley Lab team designs active polyelectrolyte binder that allows for a doubling in capacity of conventional Li-sulfur battery

Green Car Congress

A team of researchers led by scientists at the US Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have designed an active polyelectrolyte binder (PEB) that actively regulates key ion transport processes within a lithium-sulfur battery, and have also shown how it functions on a molecular level.

article thumbnail

Sulfur–TiO2 yolk-shell cathode for Li-sulfur battery shows best long-cycle performance so far

Green Car Congress

Electrochemical performance of sulfur–TiO 2 yolk–shell nanostructures. (a) a) Charge/discharge capacity and Coulombic efficiency over 1,000 cycles at 0.5 b) Capacity retention of sulfur–TiO 2 yolk–shell nanostructures cycled at 0.5 C, in comparison with bare sulfur and sulfur–TiO 2 core–shell nanoparticles.

article thumbnail

U Tokyo team proposes new high-capacity rechargeable battery system based on oxide-peroxide redox reaction

Green Car Congress

(a) Charge and discharge voltage curves in repeated charge/discharge cycles at 45 mA g ?1. b) Charge and discharge voltage curves at various current densities (13.5–1080 are proposing a new sealed rechargeable battery system operating on a redox reaction between an oxide (O 2- ) and a peroxide (O 2 2- ) in the cathode.

Li-ion 225
article thumbnail

Stanford Researchers Demonstrate a New Nanostructured Lithium Sulfide/Silicon Rechargeable Battery System with High Specific Energy

Green Car Congress

The new battery combines a Li 2 S/mesoporous carbon composite cathode and a silicon nanowire anode. Yi Cui at Stanford University have demonstrated a new proof-of-concept lithium metal-free battery with high specific energy consisting of a lithium sulfide (Li 2 S)/mesoporous carbon composite cathode and a silicon (Si) nanowire anode.

Li-ion 199
article thumbnail

Graphene-sulfur composite as stable high energy capacity cathodes for Li-ion batteries

Green Car Congress

In a paper published in the ACS journal Nano Letters , they suggest that this material represents a promising cathode material for rechargeable Li-ion batteries with high energy density. Sulfur also possesses other advantages such as low cost and environmental benignity. Electrochemical characterization of graphene-sulfur composites.

Li-ion 239