Remove Lithium Sulfur Remove Resource Remove Sodium Remove Universal
article thumbnail

Vanderbilt researchers find iron pyrite quantum dots boost performance of sodium-ion and Li-ion batteries

Green Car Congress

Researchers at Vanderbilt University have demonstrated that ultrafine sizes (∼4.5 nm, average) of iron pyrite (FeS 2 ) nanoparticles are advantageous to sustain reversible conversion reactions in sodium ion and lithium ion batteries. A paper on their work is published in the journal ACS Nano.

Li-ion 150
article thumbnail

PATHION develops new LiRAP-based solid-state electrolytes for Li-sulfur and sodium-ion batteries

Green Car Congress

PATHION is working on a derivative for Li-sulfur batteries as well as a derivative that could be applied in a sodium-ion battery. Lithium sulfur. The first PATHION presentation described the role of LiRAP in a solid-state lithium-sulfur electrolyte. Braga, J.A. Ferreira, V. Stockhausen, J.E. Oliveira, A.

Li-ion 150
article thumbnail

Faraday Institution commits a further $31M to battery research to deliver commercial impact

Green Car Congress

Although mass manufacture has made lithium-ion batteries cheaper, cost and durability remain obstacles to the widespread adoption of battery electrical vehicles. Recycling and reuse (ReLiB) , led by Dr Paul Anderson, University of Birmingham, with researchers from the Universities of Edinburgh, Leicester, Newcastle and UCL.

article thumbnail

Drexel team develops stable Li-S battery with carbonate electrolyte

Green Car Congress

Researchers at Drexel University have stabilized a rare monoclinic ?-sulfur sulfur phase within carbon nanofibers that enables successful operation of Lithium-Sulfur (Li-S) batteries in carbonate electrolyte for 4000 cycles. AN open-access paper on their work is published in Communications Chemistry.

Carbon 285
article thumbnail

Sulfur–TiO2 yolk-shell cathode for Li-sulfur battery shows best long-cycle performance so far

Green Car Congress

(b) Capacity retention of sulfur–TiO 2 yolk–shell nanostructures cycled at 0.5 C, in comparison with bare sulfur and sulfur–TiO 2 core–shell nanoparticles. The authors say that, to the best of their knowledge, this is the first time that a lithiumsulfur battery with this level of performance has been described.

article thumbnail

Argonne researchers advancing new class of selenium sulfide composite cathodes that could boost Li-ion energy density 5x

Green Car Congress

New composite materials based on selenium (Se) sulfides used as the cathode in a rechargeable lithium-ion battery could increase Li-ion density five times, according to research carried out at the US Department of Energy’s Advanced Photon Source at Argonne National Laboratory. Recently, lithium?sulfur sulfur (Li/S) and lithium?oxygen

Li-ion 225
article thumbnail

The EV Transition Explained: Battery Challenges

Cars That Think

Stiff Competition for Engineering Talent One critical area of resource competition is over the limited supply of software and systems engineers with mechatronics and robotics expertise needed for EVs. One possible solution is to move away from lithium-ion batteries and nickel-metal hydrides batteries to other battery chemistries such as.