Remove Energy Remove Energy Storage Remove Ni-Li Remove Sodium
article thumbnail

Researchers show that layered calcium transition metal oxides can be promising cathode materials for Ca-ion batteries

Green Car Congress

Out of several candidates that could replace Li in rechargeable batteries, calcium (Ca) stands out as a promising metal. Not only is Ca 10,000 times more abundant than Li, but it can also yield—in theory—similar battery performance. Haesun Park, Christopher J. 202101698.

Ni-Li 302
article thumbnail

Faradion demonstrates proof-of-concept sodium-ion electric bike

Green Car Congress

British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Sodium-ion intercalation batteries—i.e., Oxford University was also a partner. Earlier post.)

Sodium 150
article thumbnail

Amorphous titanium dioxide nanotube anodes for sodium-ion batteries show ability to self-improve specific capacity

Green Car Congress

A team of researchers at the US Department of Energy’s Argonne National Laboratory has synthesized amorphous titanium dioxide nanotube (TiO 2 NT) electrodes directly grown on current collectors without binders and additives to use as an anode for sodium-ion batteries. —Xiong et al.

Sodium 210
article thumbnail

ANL team develops new class of Li- and Na- rechargeable batteries based on selenium and selenium-sulfur; greater volumetric energy densities than sulfur-based batteries

Green Car Congress

Cycling performance of Li/SeS 2 ?C, Researchers at Argonne National Laboratory have developed selenium and selenium–sulfur (Se x S y )-based cathode materials for a new class of room-temperature lithium and sodium batteries. Unlike the widely studied Li/S system, both Se and Se x S y can be cycled to high voltages (up to 4.6

Recharge 220
article thumbnail

Researchers call for integration of materials sustainability into battery research; the need for in situ monitoring

Green Car Congress

Substantial progress in battery technology is essential if we are to succeed in an energy transition towards a more carbon-neutral society. We need new storage technologies if more renewables are to be used on the electrical grid; similarly, the electrification of transport requires much cheaper and longer-lasting batteries.

Li-ion 150
article thumbnail

Take a detailed look at 7 types of energy storage batteries

Setec Powerr

With the worldwide emphasis on renewable energy sources such as solar and wind, energy storage has become an essential solution for grid stability and reliability. Not only that, but energy storage is also an important research direction in the field of electric vehicles. Classification of energy storage.

article thumbnail

New class of high entropy materials for energy storage applications

Green Car Congress

A team led by researchers from the Karlsruhe Institute of Technology (KIT) in Germany is proposing a new class of high entropy materials for energy storage applications. The Li-containing entropy-stabilized oxyfluoride (Li x (Co 0.2 V vs. Li + /Li, enabling its use as a cathode active material.