Remove Class Remove Li-ion Remove Sodium Remove Universal
article thumbnail

PATHION develops new LiRAP-based solid-state electrolytes for Li-sulfur and sodium-ion batteries

Green Car Congress

Supported by an ARPA-E grant, LiRAP has proven to be a safe alternative compared to the liquid electrolytes used in most of today’s lithium ion batteries. The LiRAP solid electrolytes conduct Li + ions well at high voltage and high current, providing much enhanced energy density and power capacity as well as safety. Braga, J.A.

Li-ion 150
article thumbnail

Researchers show that layered calcium transition metal oxides can be promising cathode materials for Ca-ion batteries

Green Car Congress

Out of several candidates that could replace Li in rechargeable batteries, calcium (Ca) stands out as a promising metal. Not only is Ca 10,000 times more abundant than Li, but it can also yield—in theory—similar battery performance. Haesun Park, Chung-Ang University, co-corresponding author. —Prof.

Ni-Li 302
article thumbnail

Faradion demonstrates proof-of-concept sodium-ion electric bike

Green Car Congress

E-bike powered by Faradion prototype Na-ion battery pack. British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Oxford University was also a partner.

Sodium 150
article thumbnail

Report: Sumitomo and Kyoto University developing lower temperature molten-salt battery; about 10% the cost of Li-ion

Green Car Congress

in partnership with Kyoto University, has developed a lower temperature molten-salt rechargeable battery that promises to cost only about 10% as much as lithium ion batteries. A drawback to the general class of molten salt batteries has been high operating temperatures. The Nikkei reports that Sumitomo Electric Industries Ltd.,

article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C. A typical Li-air battery discharges at 2.5-2.7

Sodium 218
article thumbnail

Argonne researchers advancing new class of selenium sulfide composite cathodes that could boost Li-ion energy density 5x

Green Car Congress

Cycle performance of Li cells with (a, b) Se?, (c, New composite materials based on selenium (Se) sulfides used as the cathode in a rechargeable lithium-ion battery could increase Li-ion density five times, according to research carried out at the US Department of Energy’s Advanced Photon Source at Argonne National Laboratory.

Li-ion 225
article thumbnail

Study identifies halogen-free superhalogen electrolytes for Li-ion batteries

Green Car Congress

Most electrolytes currently used in Li-ion batteries contain halogens, which are toxic. An in-depth study based on first-principles calculations by researchers at Virginia Commonwealth University has shown that the anions of commercially available electrolytes for Li-ion batteries are all superhalogens.

Li-ion 268