Remove Battery Remove Comparison Remove Low Cost Remove Sodium
article thumbnail

New long-duration, extended capacity Na-Al battery design for grid storage

Green Car Congress

Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. The team previously reported a neutral molten salt reaction. of peak charge capacity.

article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.

Sodium 186
article thumbnail

Faradion demonstrates proof-of-concept sodium-ion electric bike

Green Car Congress

E-bike powered by Faradion prototype Na-ion battery pack. For the proof-of-concept, the cells were manufactured to be larger than necessary to avoid unnecessary costs and lengthy manufacturing processes at this early stage. Sodium-ion intercalation batteries—i.e., Sodium-ion intercalation batteries—i.e.,

Sodium 150
article thumbnail

Antimony nanocrystals as high-capacity anode materials for both Li-ion and Na-ion batteries

Green Car Congress

The data for 10 nm Sn (tin) NCs are shown for comparison. One molar LiPF6 in ethylene carbonate/dimethyl carbonate mixture containing 3 wt % of FEC was used as electrolyte for Li-ion cells, whereas 1 M NaClO 4 in propylene carbonate containing 10 wt % of FEC was used for Na-ion batteries. All batteries were cycled in the 20 mV to 1.5

Li-ion 220
article thumbnail

UNSW team proposes hard carbons from automotive shredder residue as anode material for sodium-ion batteries

Green Car Congress

Researchers from UNSW Sydney (Australia) report in an open-access paper in the Journal of Power Sources on the use of hard carbons derived from automotive shredder residue (ASR) as a suitable anode electroactive material for sodium-ion batteries (NIBs). The situation is much worse for graphite. Sarkar et al. 2023.233577

Sodium 170
article thumbnail

PNNL study outlines requirements for grid storage, reviews four electrochemical energy storage systems: vanadium redox flow, Na-beta, Li-ion and lead-carbon

Green Car Congress

published in the ACS journal Chemical Reviews , reviews in detail four stationary storage systems considered the most promising candidates for electrochemical energy storage: vanadium redox flow; sodium-beta alumina membrane; lithium-ion; and lead-carbon batteries. Vanadium redox flow battery. In their study, Yang et al.

Li-ion 231