Remove Low Cost Remove Sodium Remove Store Remove Wind
article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.

Sodium 186
article thumbnail

UT Austin team devises new strategy for safe, low-cost, all-solid-state rechargeable Na or Li batteries suited for EVs

Green Car Congress

John Goodenough, known around the world for his pioneering work that led to the invention of the rechargeable lithium-ion battery, have devised a new strategy for a safe, low-cost, all-solid-state rechargeable sodium or lithium battery cell that has the required energy density and cycle life for a battery that powers an all-electric road vehicle.

Low Cost 150
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C. A = lithium or sodium (Li or Na), M represents a metal and 1 ≤ n < z. —Lu et al.

Sodium 218
article thumbnail

Molten-Salt Battery Freezes Energy Over a Whole Season

Cars That Think

Especially for sources like wind and solar, which have discontinuous availability. Molten-salt batteries , as the name implies, use a liquid, molten-salt electrolyte, which freezes at room temperature, allowing the batteries to be stored in an inactive state. He expects the battery to retain over 80% of its charge in that period.

article thumbnail

Total Signs Research Agreement with MIT to Develop New Stationary Batteries for Solar Power; Smaller-Scale Version of All-Liquid Metal Battery Work Supported by ARPA-E

Green Car Congress

The ARPA-E award is supported the development of the liquid metal grid-scale battery for low-cost, large scale storage of electrical energy. This new class of batteries could enable continuous power supply from renewable energy sources, such as wind and solar and a more stable, reliable grid. The researchers have since switched.

MIT 199
article thumbnail

DOE Awarding $620M for Smart Grid Demonstration and Energy Storage Projects

Green Car Congress

Improved energy storage technologies will allow for expanded integration of renewable energy resources like wind and photovoltaic systems and will improve frequency regulation and peak energy management. Tehachapi Wind Energy Storage Project. Notrees Wind Storage. Wind Firming EnergyFarm. 29,561,142. 125,006,103.

article thumbnail

PNNL study outlines requirements for grid storage, reviews four electrochemical energy storage systems: vanadium redox flow, Na-beta, Li-ion and lead-carbon

Green Car Congress

published in the ACS journal Chemical Reviews , reviews in detail four stationary storage systems considered the most promising candidates for electrochemical energy storage: vanadium redox flow; sodium-beta alumina membrane; lithium-ion; and lead-carbon batteries. In their study, Yang et al. Credit: ACS, Yang et al. Click to enlarge.

Li-ion 231