How Hard Is Lithium-Air Battery Research? Pretty Tough, Actually

Green Car Reports

It''s hard to keep track of all the future battery technology candidates, but lithium-air battery technology is among the most widely-researched. Its biggest draw is the potential to store three times the energy in batteries the same size and weight of today''s electric vehicles--providing huge increases in range.

Volkswagen To Triple Battery Capacity With Lithium-Air Technology?

Green Car Reports

So far, scientists have struggled to find batteries for electric cars that match the huge amounts of energy stored in a gallon of gasoline or diesel. Fossil fuels may not be the cleanest way of powering us between two points on a map, but there''s little doubt they offer convenience. As a result we get big, heavy batteries with relatively short


Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

UK Researchers Developing Rechargeable Lithium-Air Battery; Up to 10X the Capacity of Current Li-ion Cells

Green Car Congress

Diagram of the STAIR (St Andrews Air) cell. Oxygen drawn from the air reacts within the porous carbon to release the electrical charge in this lithium-air battery. Researchers in the UK are developing a rechargeable lithium-air battery that could deliver a ten-fold increase in energy capacity compared to that of currently available lithium-ion cells. Oxygen from the air is the active material for the cathode and is reduced at the cathode surface.

2009 223

IBM Almaden Lab Exploring Lithium-Air Batteries for Next-Generation Energy Storage

Green Car Congress

General schematic of a lithium-air battery. The team plans to explore rechargeable Lithium-Air systems, which could offer 10 times the energy capacity of lithium-ion systems. Lithium-ion rechargeable (secondary) batteries are based on a pair of intercalation electrodes. On charging, lithium ions move from the cathode through the electrolyte and insert into the anode; discharging reverses the process. Adapted from Ogasawara et al. Click to enlarge.

2009 150

Report: VW Group to decide how to proceed with Quantumscape solid state energy storage by July

Green Car Congress

The All-Electron Battery stores energy by moving electrons, rather than ions, and uses electron/hole redox instead of capacitive polarization of a double-layer. In its most recent US patent application, published on 12 February 2015 and filed on 6 August 2013, Quantumscape outlined a solid-state Lithium-air battery cell using a garnet electrolyte material. US Patent Applications Nº 20150044581: Solid State Lithium-Air Based Battery Cell.

2015 251

Team at Naval Research Laboratory suggests design direction for structural batteries

Green Car Congress

The researchers’ analysis also suggests that further found that ext-generation structural batteries should look to energy-dense aluminum-air and zinc-air batteries.

2020 224

PNNL team uncovers reaction mechanisms of Li-air batteries; how batteries blow bubbles

Green Car Congress

Lithium-air batteries are looked to by many as a very high-energy density next-generation energy storage solution for electric vehicles. However, the technology has several holdups, including losing energy as it stores and releases its charge.The reaction mechanisms are, in general, not well understood. One reaction that hasn’t been fully explained is how oxygen blows bubbles inside a lithium-air battery when it discharges.

2017 150

DOE Awards 24M Hours of Supercomputing Time to Investigate Materials for Li-Air Batteries

Green Car Congress

The US Department of Energy (DOE) has awarded 24 million hours of supercomputing time to investigate materials for developing lithium air batteries, capable of powering a car for 500 miles on a single charge. Using the Li-air award, a research team including scientists from Oak Ridge National Laboratory, Argonne National Laboratory and IBM will use two of the world’s most powerful supercomputers to design new materials required for a lithium-air battery.

2010 193

New nanolithia cathodes may address technical drawbacks of Li-air batteries; scalable, cheap and safer Li-air battery system

Green Car Congress

An international team from MIT, Argonne National Laboratory and Peking University has demonstrated a lab-scale proof-of-concept of a new type of cathode for Li-air batteries that could overcome the current drawbacks to the technology, including a high potential gap (>1.2 V) In a new concept for battery cathodes, nanometer-scale particles made of lithium and oxygen compounds (depicted in red and white) are embedded in a sponge-like lattice (yellow) of cobalt oxide, which keeps them stable.

2016 163

U Waterloo team shows four-electron conversion for Li-O2 batteries for high energy density; inorganic molten salt electrolyte, high temperature

Green Car Congress

Chemists from the University of Waterloo have successfully resolved two of the most challenging issues surrounding lithium-oxygen batteries, and in the process created a working battery with near 100% coulombic efficiency. The new work, published in Science , shows that four-electron conversion for lithium-oxygen electrochemistry is highly reversible.

China team outlines 5 key areas of future research to realize Li-air batteries

Green Car Congress

In an open access paper published in the International Journal of Smart and Nano Materials , researchers from the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences review significant developments and remaining challenges of practical Li–air batteries and the current understanding of their chemistry. The energy density of the lithiumair battery with respect to the anode could reach 13,000 Wh kg ?1

2012 238

NYSERDA Commits $8M to Develop and Commercialize 19 New York Battery and Energy-Storage Technology Projects

Green Car Congress

The 19 projects, which include two lithium-air efforts, will leverage $7.3 Also, the system can provide backup electricity during an outage and, during normal operation, allow customers to draw on the stored energy to reduce both their peak electric grid demand and the utility charges associated with peak demand. Next-generation lithium-ion rechargeable batteries. Materials for improved lithium-ion battery electrodes for automotive applications.

2010 193

Researchers find synergy between lithium polysulfide and lithium nitrate as electrolyte additives prevent dendrite growth on Li metal anodes

Green Car Congress

Yet-Min Chiang (a co-founder of A123 Systems) at MIT, have discovered that a synergetic effect resulting from the addition of both lithium polysulfide and lithium nitrate to ether-based electrolyte prevents dendrite growth on Li-metal anodes and minimizes electrolyte decomposition. the formation of a SEI layer with high uniformity and stability is essential to ensure high Coulombic efficiency, long cycle life and safety in lithium metal-based batteries.

2015 212

Argonne National Laboratory to Host Beyond Lithium Ion Symposium

Green Car Congress

Argonne National Laboratory, near Chicago, will host on 3-4 May 2010 the symposium “ Beyond Lithium Ion: Computational Perspectives ” to discuss research opportunities in electrochemical energy storage, specifically, lithium-air batteries for transportation.

St. Andrews team elucidates behavior of carbon cathodes in Li-air batteries; the importance of the synergy between electrode and electrolyte

Green Car Congress

Carbon is seen as an attractive potential cathode material for aprotic (non-aqueous) Lithium-air batteries, which are themselves of great interest for applications such as in electric vehicles because of the cells’ high theoretical specific energy. Peter Bruce has further investigated the behavior of carbon as a possible porous cathode for aprotic Li-air cells; a paper on their work is published in the Journal of the American Chemical Society.

2012 209

BASF expanding catalyst and battery R&D site in Ohio with $25M investment; new cathode materials research

Green Car Congress

BASF is focused on developing a full suite of advanced cathode and electrolyte solutions for current and next-generation lithium-ion batteries as well as for future battery systems. In addition to developing advanced materials for lithium-ion batteries, BASF is also researching future battery concepts such as lithium-sulfur and lithium-air. BASF is investing $25 million in renovating and expanding its research and development (R&D) facility in Beachwood, Ohio.

2013 181

U-M team uses new technique to provide in-depth understanding of dendrite growth on Li metal anodes

Green Car Congress

Lithium-sulfur and lithium air batteries have the potential to store 10 times more energy in the same space as the current state-of-the-art lithium-ion batteries. Dendrites growing in a lithium metal battery. To avoid complicating the problem with a different electrode that would develop its own problems, they studied a battery with two lithium electrodes. Some dendrites broke off and became “dead lithium” floating around in the battery.

2016 181

PNNL licenses three technologies via Startup America; batteries, fuel cells and buildings

Green Car Congress

optioned a PNNL-developed method for building titanium oxide and carbon structures that greatly improve the performance of lithium-ion batteries. Vorbeck, a manufacturer and developer of applications using its proprietary graphene material ( earlier post ), optioned the technology for use in a graphene-based electrode for lithium-air and lithium-sulfur batteries.

2011 209

Jülich, ORNL researchers advance high energy density iron-air batteries

Green Car Congress

In a new study published in the journal Nano Energy, researchers from Forschungszentrum Jülich in Germany and Oak Ridge National Laboratory (ORNL) provide in-depth insight into the electrochemically induced surface reaction processes on iron anodes in concentrated alkaline electrolyte in iron-air batteries. When it comes to volumetric energy density, iron–air batteries could perform even better with 9,700 Wh/l—almost five times higher than today’s lithium-ion batteries (2,000 Wh/l).

2017 163

Researchers Develop Lithium-Water Electrochemical Cell for the Controlled Generation of H2 and Electricity

Green Car Congress

Schematic representation and operating principles of the lithium–water electrochemical cell used for hydrogen generation: (1) external circuit and (2) inside of lithium–water electrochemical cell. Scientists from the Energy Technology Research Institute, AIST in Tsukuba, Japan, have developed a lithium-water electrochemical cell for the controlled generation of hydrogen and electricity. Only lithium ions can pass across the LISICON film.

2010 172

ARPA-E Selects 37 Projects for $106M in Funding in Second Round; Electrofuels, Better Batteries and Carbon Capture

Green Car Congress

This process is less than 1% efficient at converting sunlight to stored chemical energy. Zn-Air Battery : Zinc Flow Air Battery (ZFAB), the Next Generation Energy Storage for Transportation. ReVolt Technology will develop a novel large format high-energy zinc-air flow battery for long all-electric range Plug-In and All Electric vehicles. With a clear path to commercialization this technology hopes to revolutionize Li-Air batteries for electric vehicle applications.

2010 214

IBM Almaden Researchers Say Li-Air Batteries Offer Promise for Transition to Electrified Transportation, But Face Challenges and Multi-Decade Development Cycle

Green Car Congress

Four different architectures of Li-air batteries, which all assume the use of lithium metal as the anode. IBM and its partners have launched a multi-year research initiative exploring rechargeable Li-air systems: The Battery 500 Project. They will serve as guidelines for the research to be carried out on Li-air systems. The transition to Li-air batteries (if successful) should be viewed in terms of a similar development cycle. Aprotic Li-air battery.

2010 207

IBM releases fifth annual Next Five in Five list of near-term significant innovations; personalized routing for commuting/transportation makes the cut

Green Car Congress

Also on the list of five is the arrival of advanced batteries, including air batteries (e.g., Lithium air), but targeted initially at small devices. IBM and its partners have launched a multi-year research initiative exploring rechargeable Li-air systems for transportation—The Battery 500 Project ( earlier post )—but are viewing it in terms of a multi-decade development cycle. Batteries will breathe air to power our devices.

2010 188