Remove Energy Remove Global Remove Solar Remove Water
article thumbnail

All-in-one solar-powered tower makes carbon-neutral kerosene in the field at pilot-scale

Green Car Congress

Researchers in Europe led by a team from ETH Zurich have designed a fuel production system that uses water, CO 2 , and sunlight to produce aviation fuel. We are the first to demonstrate the entire thermochemical process chain from water and CO 2 to kerosene in a fully-integrated solar tower system. Zoller et al.

Solar 446
article thumbnail

Heliogen and Bloom Energy demonstrate production of low-cost green hydrogen; concentrated solar and high-temp electrolysis

Green Car Congress

Heliogen and Bloom Energy have successfully demonstrated the production of green hydrogen by integrating the companies’ technologies: Heliogen’s concentrated solar energy system and the Bloom Electrolyzer. Bloom Energy officially introduced the Bloom Electrolyzer in July 2021. Source: Heliogen.

Low Cost 397
article thumbnail

National Alliance for Water Innovation to lead DOE energy-water desalination hub

Green Car Congress

The US Department of Energy (DOE) selected the National Alliance for Water Innovation (NAWI) to lead a US Department of Energy (DOE) Energy-Water Desalination Hub that will address water security issues in the United States.

Water 236
article thumbnail

BMW Group sourcing aluminum produced using solar energy from EGA

Green Car Congress

The BMW Group will begin sourcing aluminum produced using solar electricity with immediate effect. Producing aluminum is extremely energy-intensive. The use of solar electricity is therefore an effective lever for reducing the CO 2 emissions associated with aluminum smelting.

BMW 395
article thumbnail

Researchers propose testing standards for particulate photocatalysts in solar fuel production

Green Car Congress

Utilization of renewable solar energy is crucial for addressing the global energy and environmental concerns and achieving sustainable development. In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals.

Solar 418
article thumbnail

Monash study on solar-driven electrolysis for green hydrogen production cautions on life-cycle emissions and EROI

Green Car Congress

Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. The open-access paper on the study is published in the RSC journal Energy & Environmental Science. Palmer et al.

Solar 459
article thumbnail

Study finds direct seawater splitting has substantial drawbacks to conventional water splitting, offers almost no advantage

Green Car Congress

A study by a team of researchers from Technische Universität Berlin (TUB) and Fritz-Haber-Institut der Max-Planck-Gesellschaft has found that direct seawater splitting for hydrogen production has substantial drawbacks compared to conventional water splitting and offers almost no advantage. Additionally, H 2 O is needed for water splitting.

Water 497