Mercedes-Benz introduces the EQA: entry-level to the electric EQ vehicle family
Geely Auto Group and Tencent to cooperate on intelligent cockpits, digitalization, autonomous drive, and low-carbon development

DOE awarding more than $50M to 15 projects to advance critical material innovations

The US Department of Energy (DOE) is awarding more than $50 million in funding for 15 projects focused on field validation and demonstration—as well as next-generation extraction, separation, and processing technologies—for critical materials.

Critical materials are used in many products important to the US economy and energy technologies, such as rare-earth elements used to manufacture high-strength magnets for offshore wind-turbine generators and lithium and cobalt in lithium-ion batteries for electric vehicles.

Projects selected under this funding opportunity announcement will reduce both the costs of critical materials and the environmental impacts of production. The projects are divided into two main topic areas:

  • Field Validation and Demonstration of Extraction, Separation, and Processing Technologies. Four projects were selected under this topic to validate improved upstream extraction and midstream separation and processing technologies of critical materials at scales that facilitate the next step to commercialization.

  • Next-Generation Extraction, Separation, and Processing Technologies. Eleven projects were selected under this topic to develop early to mid-stage R&D alternative, cost-competitive technologies for upstream extraction and midstream separation and processing of critical materials key to energy technologies.

Topic 1, Area of Interest 2: Improved Beneficiation, Separation and/or Processing

  • PUREgraphite LLC; High Efficiency Continuous Graphitization Furnace Technology for Lithium-Ion Battery Synthetic Graphite Material
    Partners: Harper International, Phillips66
    DOE funding: $5,577,738; cost share: $5,925,475; Total costs: $11,503,213

  • American Battery Metals Corporation; Field Demonstration of Selective Leaching, Targeted Purification, and Electro-Chemical Production of Battery Grade Lithium Hydroxide Precursor from Domestic Claystone Resources
    Partners: American Lithium Corporation, DuPont Water Solutions
    DOE funding: $2,272,112; costs share: $2,272,112; Total costs: $4,544,224

Topic 1, Area of Interest 3: Large Scale Projects

  • General Atomics; Rare Earth Element (REE) Separation and Processing Demonstration Project
    Partners: Rare Element Resources, Inc., Umwelt- und Ingenieurtechnik GMbH Dresden, LNV LLC
    DOE funding: $21,989,530; Cost share: $21,989,530; Total costs: $43,979,060

  • BHER Minerals, LLC; Electrolytic Production of Battery-Grade LiOH•H2O from Geothermal Brine
    Partners: ZAP Engineering & Construction Services, Inc., CalEnergy Operating Corp, Lawrence Berkeley National Lab, Imperial Valley Economic Development Corporation, Momentum
    DOE share: $14,894,540; Cost share: $14,894,541; Total costs: $29,789,081

Topic 2, Area of Interest 1: Rare Earth Element Separation

  • Phinix,LLC; Rare Earth Element Separation Using Gas-Assisted Micro-Flow Extraction with Task-Specific Ionic Liquids
    Partners: NICHE Industrial Chemicals, Virginia Polytechnic Institute and State University
    DOE share:$500,000; Cost share $225,000; Total costs: $725,000

  • Technology Holding LLC; Next Generation Separation Method for Rare Earths
    Partners: Massachusetts Institute of Technology
    DOE share: $499,673; Cost share: $124,999; Total costs: $624,672

Topic 2, Area of Interest 2: Conversion to Rare Earth Metals (RE-metals)

  • University of Wyoming; Generation of Rare Earth Metals from Rare Earth Oxides by Using Microwave Plasma
    Partners: Colorado School of Mines, Ames Laboratory, Eutectix, Rare Element Resources
    DOE share: $500,000; Cost share: $125,500; Total costs: $625,500

  • Case Western Reserve University; Novel Electrowinning Reactor for the Energy-Efficient, Low-Cost Production of Rare Earth Metals
    Partners: Lawrence Livermore National Laboratory
    DOE share: $500,000; Cost share: $125,000; Total costs: $625,000

  • University of Virginia; Development of Industrial Scale Rare Earth Master Alloys from Their Native Oxides for Magnet Production
    Partners: Ames Laboratory
    DOE share: $500,000; Cost share: $125,000: Total costs: $625,000

Topic 2, Area of Interest 3: Li Extraction from Unconventional Sources

  • National Renewable Energy Laboratory; Advanced Mineral Separations with Novel Simulated Moving Beds
    Partners: Colorado School of Mines, Critical Materials Institute, Shell International Exploration & Production, Inc., Standard Lithium
    DOE share: $500,000; Cost share: $156,380; Total costs: $656,380

  • Oregon State University; Microchannel-based Membrane-less Extraction of Li from Unconventional Lithium Sources & the Separation of REE
    Partners: University of Pittsburgh
    DOE share: $500,000; Cost share: $125,000; Total costs: $625,000

  • Pacific Northwest National Laboratory; Lithium Recovery from Unconventional Sources Using Magnetic Core-Shell Nanoparticles
    Partners: Moselle Technologies, Enerplus Corporation, Prairie Lithium Corporation, Enertopia Corporation, and Dajin Lithium Corporation Richland, WA
    DOE share: $425,000; Cost share: $160,000; Total costs: $585,000

  • 525 Solutions, Inc.; Ultra-High Capacity Adsorbent Nanofibrous Mats for the Recovery of Lithium from Seawater, Geothermal Brines, and Beyond
    Partners: Oak Ridge National Laboratory, Wyonics, LLC, University of Wyoming
    DOE share: $500,000; Cost share: $125,024; Total costs: $625,024

  • University of Texas at Austin; Direct Conversion of Li-Ions to Li-Metal from Domestic Brines or Produced Water through Electromagnetically-Controlled Dendritic Electrodeposition
    Partners: University of California, Berkeley, Oak Ridge National Laboratory, Critical Materials Institute
    DOE share: $500,000; Costs-share: $125,000; Total costs: $625,000

  • Mineral Selective Technologies; Informed design of crystalline ion exchangers: Improved λ-MnO2 phase for lithium extraction from geologic fluids
    Partners: Natural History Museum of Los Angeles, Oak Ridge National Laboratory, Geo40, Ltd.
    DOE share: $400,000; Cost share: $100,000; Total costs: $500,000

This funding opportunity is part of DOE’s efforts to reduce American dependence on imported critical materials by both diversifying the sources of materials needed for energy technologies and establishing domestic capabilities to refine materials used in manufacturing.

Projects are funded through the Office of Energy Efficiency and Renewable Energy’s Advanced Manufacturing Office, which supports the development of technologies that improve energy efficiency in US manufacturing as well as foundational, cross-cutting manufacturing processes, information, and materials technologies critical to efficient and competitive domestic manufacturing.

Comments

The comments to this entry are closed.