Remove Conversion Remove Hydrogen Remove Solar Remove Water
article thumbnail

Researchers develop highly efficient organometal halide perovskite photoelectrodes for water splitting

Green Car Congress

Photoelectrochemical (PEC) water splitting based on solar energy is one promising approach for the production of green hydrogen. However, its widespread application is limited by a lack of efficient photoanodes for catalyzing the rate-limiting oxygen evolution reaction (OER), an important reaction in PEC water splitting.

Water 369
article thumbnail

Photocatalytic optical fibers convert water into hydrogen

Green Car Congress

Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. The microstructured optical fiber canes (MOFCs) with photocatalyst generate hydrogen that could power a wide range of sustainable applications.

Water 371
article thumbnail

Kobe team’s hematite mesocrystal photocatalyst simultaneously produces hydrogen and hydrogen peroxide

Green Car Congress

Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogen gas and hydrogen peroxide at the same time from sunlight and water. Hydrogen has gained attention as one of the possible next generation energy sources. under 600nm). Mesocrystal technology.

Hydrogen 415
article thumbnail

Researchers propose testing standards for particulate photocatalysts in solar fuel production

Green Car Congress

Utilization of renewable solar energy is crucial for addressing the global energy and environmental concerns and achieving sustainable development. In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals. Credit: DICP.

Solar 418
article thumbnail

Toyota and DIFFER partner on direct solar production of hydrogen from humid air, rather than water

Green Car Congress

The Dutch Institute for Fundamental Energy Research ( DIFFER ) is partnering with Toyota Motor Europe (TME) to develop a device that absorbs water vapor, and splits it into hydrogen and oxygen directly using solar energy. One of these sustainable fuels is hydrogen, which can be used to store renewable energy.

Water 333
article thumbnail

Study finds direct seawater splitting has substantial drawbacks to conventional water splitting, offers almost no advantage

Green Car Congress

A study by a team of researchers from Technische Universität Berlin (TUB) and Fritz-Haber-Institut der Max-Planck-Gesellschaft has found that direct seawater splitting for hydrogen production has substantial drawbacks compared to conventional water splitting and offers almost no advantage.

Water 497
article thumbnail

Kobe team develops method for highly efficient hydrogen production using sunlight, water and hematite

Green Car Congress

A research group led by Associate Professor Takashi Tachikawa of Kobe University’s Molecular Photoscience Research Center has developed a strategy that greatly increases the amount of hydrogen produced from sunlight and water using hematite (??Fe Mesocrystal photoanode formation and photochemical water splitting characteristics.

Water 334