Lithium Australia produces LFP cathode material and Li-ion batteries from mine waste
CSIRO to partner with Fortescue on hydrogen technologies; focus on metal membrane technology

MIT proof-of-concept demo of ionic wind propulsion for aircraft

MIT researchers have demonstrated that an aircraft with a 5-meter wingspan can sustain steady-level flight using ionic-wind propulsion. The aircraft has no moving parts, does not depend on fossil fuels to fly, and is completely silent.

The researchers describe their proof of concept for electroaerodynamic (EAD) airplane propulsion in a paper in the journal Nature.

Since the first aeroplane flight more than 100 years ago, aeroplanes have been propelled using moving surfaces such as propellers and turbines. Most have been powered by fossil-fuel combustion. Electroaerodynamics, in which electrical forces accelerate ions in a fluid, has been proposed as an alternative method of propelling aeroplanes—without moving parts, nearly silently and without combustion emissions. However, no aeroplane with such a solid-state propulsion system has yet flown. Here we demonstrate that a solid-state propulsion system can sustain powered flight, by designing and flying an electroaerodynamically propelled heavier-than-air aeroplane.

—Xu et al.

Corresponding author Steven Barrett, associate professor of aeronautics and astronautics at MIT, noted that his team’s study marked the first sustained flight of a plane with no moving parts in the propulsion system.

This has potentially opened new and unexplored possibilities for aircraft which are quieter, mechanically simpler, and do not emit combustion emissions.

—Steven Barrett

He expects that in the near-term, such ion wind propulsion systems could be used to fly less noisy drones. Further out, he envisions ion propulsion paired with more conventional combustion systems to create more fuel-efficient, hybrid passenger planes and other large aircraft.

The principle of electroaerodynamic thrust, first identified in the 1920s, describes a wind, or thrust, that can be produced when a current is passed between a thin and a thick electrode. If enough voltage is applied, the air in between the electrodes can produce enough thrust to propel a small aircraft.

For years, electroaerodynamic thrust has mostly been a hobbyist’s project, and designs have for the most part been limited to small, desktop “lifters” tethered to large voltage supplies that create just enough wind for a small craft to hover briefly in the air. It was largely assumed that it would be impossible to produce enough ionic wind to propel a larger aircraft over a sustained flight.

The MIT team’s final design resembles a large, lightweight glider. The aircraft, which weighs about 5 pounds, carries an array of thin wires, which are strung like horizontal fencing along and beneath the front end of the plane’s wing. The wires act as positively charged electrodes, while similarly arranged thicker wires, running along the back end of the plane’s wing, serve as negative electrodes.

The fuselage of the plane holds a stack of lithium-polymer batteries. Barrett’s ion plane team included members of Professor David Perreault’s Power Electronics Research Group in the Research Laboratory of Electronics, who designed a power supply that would convert the batteries’ output to a sufficiently high voltage to propel the plane. In this way, the batteries supply electricity at 40,000 volts to positively charge the wires via a lightweight power converter.

Xu

EAD airplane design. a, Computer-generated rendering of the EAD airplane. b, Photograph of actual EAD airplane after multiple flight trials. c, Architecture of the high-voltage power converter (HVPC). The HVPC consists of three stages: a series–parallel resonant inverter that converts 160–225 V direct current to a high-frequency alternating current; a high-voltage transformer that steps up the alternating-current voltage; and a full-wave Cockcroft–Walton multiplier that rectifies the high-frequency alternating current back to direct current. The three stages contribute a voltage gain of about 2.5×, 15× and 5.6×. Xu et al.

Once the wires are energized, they act to attract and strip away negatively charged electrons from the surrounding air molecules, like a giant magnet attracting iron filings. The air molecules that are left behind are newly ionized, and are in turn attracted to the negatively charged electrodes at the back of the plane.

As the newly formed cloud of ions flows toward the negatively charged wires, each ion collides millions of times with other air molecules, creating a thrust that propels the aircraft forward.

The team, which also included Lincoln Laboratory staff Thomas Sebastian and Mark Woolston, flew the plane in multiple test flights across the gymnasium in MIT’s duPont Athletic Center—the largest indoor space they could find to perform their experiments. The team flew the plane a distance of 60 meters (the maximum distance within the gym) and found the plane produced enough ionic thrust to sustain flight the entire time. They repeated the flight 10 times, with similar performance.

Motorless-plane-2-2

Undistorted camera footage from flight 9, with position and energy from camera tracking annotated. Sped up 2x. Credit: Steven Barrett. Click on image to see the flight.

This was the simplest possible plane we could design that could prove the concept that an ion plane could fly. It’s still some way away from an aircraft that could perform a useful mission. It needs to be more efficient, fly for longer, and fly outside.

—Steven Barrett

The new design is a “big step” toward demonstrating the feasibility of ion wind propulsion, according to Franck Plouraboue, senior researcher at the Institute of Fluid Mechanics in Toulouse, France (who was not involved in the research), who notes that researchers previously weren’t able to fly anything heavier than a few grams.

The strength of the results are a direct proof that steady flight of a drone with ionic wind is sustainable. [Outside of drone applications], it is difficult to infer how much it could influence aircraft propulsion in the future. Nevertheless, this is not really a weakness but rather an opening for future progress, in a field which is now going to burst.

—Franck Plouraboue

Barrett’s team is working on increasing the efficiency of their design, to produce more ionic wind with less voltage. The researchers are also hoping to increase the design’s thrust density—the amount of thrust generated per unit area. Currently, flying the team’s lightweight plane requires a large area of electrodes, which essentially makes up the plane’s propulsion system. Ideally, Barrett would like to design an aircraft with no visible propulsion system or separate controls surfaces such as rudders and elevators.

The editors of Nature noted in an editorial in the issue of the journal in which Xu et al. appears that:

Predictions about the future of flight are dangerous because work can be overtaken by events or exposed as wishful thinking. (Just four years before the aerial carnage of the Second World War, Nature solemnly predicted that the risk of attack from the air was remote. And in the 1970s, it reported claims that a hydrogen-powered aircraft could take to the skies by the end of the twentieth century.)

When the Wright brothers made their historic flight in December 1903, it didn’t receive that much attention. In part, that was because their idea was just one of several being explored to achieve flight—with others betting on the success of gliders, airships and even kites. The same is true today. Ion-drive engines are just one much-needed option to improve the efficiency and environmental impact of aircraft engines, alongside tweaks to fuel and design. Let’s hope some of them take off.

This research was supported, in part, by MIT Lincoln Laboratory Autonomous Systems Line, the Professor Amar G. Bose Research Grant, and the Singapore-MIT Alliance for Research and Technology (SMART). The work was also funded through the Charles Stark Draper and Leonardo career development chairs at MIT.

Resources

  • Haofeng Xu, Yiou He, Kieran L. Strobel, Christopher K. Gilmore, Sean P. Kelley, Cooper C. Hennick, Thomas Sebastian, Mark R. Woolston, David J. Perreault & Steven R. H. Barrett (2018) “Flight of an aeroplane with solid-state propulsion” Nature volume 563, pages 532–535 doi: 10.1038/s41586-018-0707-9

Comments

Engineer-Poet

The authors don't appear to consider ozone as an "emission".

The "thin wire" and "thick wire" can probably be improved upon.  The point of using a thin wire is to generate higher electric field strength and thus corona discharge.  There are plenty of other ways to make corona, many of them with less drag and susceptibility to damage; fine wires can probably be broken by running into something as small as a large flying insect.

The really clever application of this would be recharging in flight from the electric fields of high-voltage power lines.

mahonj

It sounds like a bad design to me. It requires exposed wires at +-20,000 volts.
It generates very low thrust, probably not enough to fly fast enough to be much use, especially in a headwind.
Ionic thrust may be fine in space where there is no drag and you can spend a year accelerating, but not much use in the atmosphere.

Engineer-Poet

Bad design?  It's a proof-of-concept, and a successful one.  A heavier-than-air aircraft has been flown under power using ionic wind thrusters in air.  The total silence is a huge plus for some applications; you can have a sound-recording drone that doesn't make any noise to interfere with its own microphones.

Wait until they tweak this to do boundary-layer control with it.

mahonj

@EP, they have had silent aircraft since 1970 - using ICE engines (!) and slow turning propellers - see:
https://en.wikipedia.org/wiki/Lockheed_YO-3

They could be even quieter with battery (and propeller) power - if you really needed them. As they point out, modern drones, driven by high speed propellers for lift are very noisy, but this can be solved with a more normal "aeroplane + slow propeller" design.

No quiet VTOL though - that would be hard, unless you used an electric catapult to launch it.

Peace Hugger

One reason military drones fly thousands of feet high is greater visual coverage of terrain. Optics are there to zoom in. At that height, there is no aural clue from the ground. So a silent UAV is no longer a top priority.

The Lurking Jerk

I can't get over the fact that 'they' have only tried this now, much like the solid state propulsion for ships that was messed with a decade ago. The advantages of doing so are obvious. For those nattering naybobs who have previously commented, who state that low speed propellers are just as good/better, I can argue otherwise. Solid state propulsion will be still harder to detect, with fewer/no resonances, and how do you make a propeller radar-invisible? Can you? Not easily. A slow-moving propeller is also extremely unwieldy and it wants to hit the ground, the launch apparatus, and nearby obstructions.
To mahonj, who asked how VTOL could be quietly accomplished: how about a disposable hydrogen balloon? After being lifted by it, just let go of it. The hydrogen source could also be what powers the fuel cell that powers the array.... ok power density would be an issue. Shut up.
To someone who complained of exposed wires at 20,000 volts: that's not unusual. Bug zappers.

Engineer-Poet
Solid state propulsion will be still harder to detect, with fewer/no resonances, and how do you make a propeller radar-invisible?

Honest to f---?  A propeller can be made of aerogels; it doesn't have to have a significant signature on anything.  This "solid-state propulsion" requires considerable lengths of CONDUCTORS which are STRONG RADAR REFLECTORS.

Do please learn physics (especially E&M) before pronouncing judgement on such topics.

Lad

Use hydrogen; first to launch the aircraft to altitude with a turbine, yet to be developed, then to maintain flight with a fuel cell generating the necessary electric fields for the ion drive.

Big Al

I had thought of using this concept in reverse as a propeller less windmill!
I never got around to developing it, but as a thought invention I did spend some time on it.
As I remember 20,000 volts is almost a minimum to get any efficient propulsion.

Engineer-Poet

I recall from long ago a wind generator concept with water droplets as the only moving part.

A fine water jet was enclosed in a charged ring through which the wind blew.  The charge on the ring induced the opposite charge on the stream of water, which retained the charge when it broke up into droplets.  The wind carried the charged droplets away to fall on the ground despite the electrostatic attraction to the ring.  The e.g. positive charge induced on the droplets left a net negative charge on the source of the water stream, which created a potential between the source of the jet and ground.  The circuit was closed when charge flowed back from the ground to the water source.

I thought this was pretty darn clever at the time.

EthanKrauss

The statements made by this team to Nature Magazine, especially on the video, are not correct. MIT is the SECOND IN HISTORY to fly an ion propelled aircraft with the power supply onboard. The first one predates the MIT device by about a decade. It is called the "Self Contained Ion Powered Aircraft," US Patent No. 10,119,527. It flies for about 2 minutes solely using ion propulsion. It does not need external assistance to take off or remain airborne. To learn more Please visit the video and website shown below,

The website: www.electronairllc.org
One of the videos: https://www.youtube.com/watch?v=Qdg0_hjuksQ&t

EthanKrauss

I feel I should add one more thing. This whole thing is about being able to carry a power supply using ion propulsion. Using a combination of a bungee cord/catapult and large wings for assistance is one way to do it.

Alternatively, it can be made much more powerful and efficient by weight. The previously patented device, the "Self Contained Ion Powered Aircraft," (since 2014 legally), has been officially shown to work.

There have been huge devices in the past that flew using ion propulsion but all such devices were orders of magnitude away from carrying the weight of their power supplies. Pretty much none of this is about size, it is almost entirely about power to weight ratio and efficiency. www.electronairllc.org

The comments to this entry are closed.