City of Ann Arbor Receives Four Hydraulic Hybrid Recycling Trucks; 30% Reduction in Fuel Consumption and Emissions
CORE BioFuel Engages RECAT Technologies to Pilot Biomass-to-Gasoline Production Reactors

Study Finds Controlling Soot May Be Fastest Method to Reduce Arctic Ice Loss and Global Warming; Second-Leading Cause of Global Warming After CO2

Controlling soot from fossil fuels and solid biofuels may be a faster method of reducing Arctic ice loss and global warming than other options, including controlling CH4 or CO2, although all controls are needed, according to a new study by Dr. Mark Z. Jacobson at Stanford University.

Results of the study suggest that soot is second only to carbon dioxide in contributing to global warming. However, climate models to date have mischaracterized the effects of soot in the atmosphere, according to Jacobson, director of Stanford’s Atmosphere/Energy Program. Because of that, soot’s contribution to global warming has been ignored completely in national and international global warming policy legislation, he said.

Controlling soot may be the only method of significantly slowing Arctic warming within the next two decades. We have to start taking its effects into account in planning our mitigation efforts and the sooner we start making changes, the better.

—Mark Jacobson

The study will be published this week in Journal of Geophysical Research (Atmospheres). Jacobson used a computer model of global climate, air pollution and weather that he developed over the last 20 years and updated to include additional atmospheric processes to analyze how soot can heat clouds, snow and ice.

Soot—black and brown particles that absorb solar radiation—comes from two types of sources: fossil fuels such as diesel, coal, gasoline, jet fuel; and solid biofuels such as wood, manure, dung, and other solid biomass used for home heating and cooking around the world.

Jacobson found that the combination of the two types of soot is the second-leading cause of global warming after carbon dioxide. That ranks the effects of soot ahead of methane, an important greenhouse gas. He also found that soot emissions kill more than 1.5 million people prematurely worldwide each year, and afflicts millions more with respiratory illness, cardiovascular disease, and asthma, mostly in the developing world where biofuels are used for home heating and cooking.

Jacobson found that eliminating soot produced by the burning of fossil fuel and solid biofuel could reduce warming above parts of the Arctic Circle in the next fifteen years by up to 1.7 degrees Celsius (3 degrees Fahrenheit). For perspective, net warming in the Arctic has been at least 2.5 degrees Celsius (4.5 degrees Fahrenheit) over the last century and is expected to warm significantly more in the future if nothing is done.

Soot lingers in the atmosphere for only a few weeks before being washed out, so a reduction in soot output would start slowing the pace of global warming almost immediately. Greenhouse gases, in contrast, typically persist in the atmosphere for decades—some up to a century or more—creating a considerable time lag between when emissions are cut and when the results become apparent.

The most immediate, effective and low-cost way to reduce soot emissions is to put particle traps on vehicles, diesel trucks, buses, and construction equipment. Particle traps filter out soot particles from exhaust fumes. Soot could be further reduced by converting vehicles to run on renewable electric power.

Jacobson found that although fossil fuel soot contributed more to global warming, biofuel-derived soot caused about eight times the number of deaths. Providing electricity to rural developing areas, thereby reducing usage of solid biofuels for home heating and cooking, would have major health benefits, he said. Soot from fossil fuels contains more black carbon than soot produced by burning biofuels, which is why there is a difference in warming impact.

Black carbon is highly efficient at absorbing solar radiation in the atmosphere, just like a black shirt on a sunny day. Black carbon converts sunlight to heat and radiates it back to the air around it. This is different from greenhouse gases, which primarily trap heat that rises from the Earth’s surface. Black carbon can also absorb light reflecting from the surface, which helps make it such a potent warming agent.

Warming of the air by any chemical, including soot, enhances natural surface emissions of water vapor [e.g., Dessler et al., 2008] and methane [Schutz et al., 1990; Anisimov, 2007] and chemical production of ozone in already-polluted locations [Jacobson, 2008b]. These three gases are all greenhouse gases, and ozone is a surface air pollutant. Warmer temperatures due to soot and other components also increase emissions of ozone and particulate matter precursors, including biogenic organic gases [e.g., Guenther et al., 1995] and NO. As such it is important to investigate whether controlling soot may reduce not only temperatures and primary particles, but also secondary air pollutant gases and particles.

—Jacobson, J. Geophys. Res.

Black carbon has an especially potent warming effect over the Arctic. When black carbon is present in the air over snow or ice, sunlight can hit the black carbon on its way towards Earth, and also hit it as light reflects off the ice and heads back towards space. Black carbon also lands on the snow, darkening the surface and enhancing melting.

There is a big concern that if the Arctic melts, it will be a tipping point for the Earth’s climate because the reflective sea ice will be replaced by a much darker, heat absorbing, ocean below. Once the sea ice is gone, it is really hard to regenerate because there is not an efficient mechanism to cool the ocean down in the short term.

—Mark Jacobson

Jacobson is a senior fellow at the Woods Institute for the Environment. This work was supported by grants from the US Environmental Protection Agency, NASA, the NASA high-end computing program, and the National Science Foundation.

Resources

  • Mark Z. Jacobson. Short-term effects of Controlling Fossil-Fuel Soot, Biofuel Soot and Gases, and Methane on Climate, Arctic Ice, and Air Pollution Health. J. Geophys. Res., In Press.

Comments

Davemart

Soot sounds a lot more controllable than CO2 or methane, so I take this as good news.

Scatter

And most importantly it's very short lived, being washed out of the air in weeks rather than decades.

ai_vin

Well something better be done, and fast, because I just heard about some more bad news. Arctic sea ice loss is just one of the feedback loops in Global warming, here's another; http://news.discovery.com/earth/phytoplankton-oceans-food-web.html

Scatter

Indeed. Arctic sea ice is not looking healthy:

http://psc.apl.washington.edu/ArcticSeaiceVolume/images/BPIOMASIceVolumeAnomalyCurrent.png

HarveyD

Too much man made CO2, Methane, black carbon soot, oil spills, etc seem to be doing a great job to get rid of polar ice, plankton, fish, birds, polar bears, etc We may end up with a clean moon like planet without all those live things.

Aureon Kwolek

Fantastic reporting by Green Car Congress authors…
And possibly the best study ever by Mark Jacobson…

felixkramer

We've been waiting for more scientists and analysts to start talking about this elephant in the room. Since we can do something about this sooner than many other steps, it starts to look like the low-hanging fruit of climate solutions.

It's the icing on the cake if we expand our definition of the "built environment" beyond houses, offices, and factories to include large (mostly diesel) vehicles. Addressing black carbon can fold right in to our ""Big Fix" and Drive Star proposals for gas-guzzler conversions. See http://www.calcars.org/ice-conversions.html .

-- Felix Kramer, Founder, CalCars.org

The comments to this entry are closed.