Remove CO2 Remove Gas Remove Solar Remove Water
article thumbnail

Audi Hungaria starts operation of Europe’s biggest solar roof installation

Green Car Congress

The remainder is compensated by bio-gas certificates. The focus lies on the challenges that are key to Audi: decarbonization; water utilization; resource efficiency; and biodiversity. The remaining heat is generated through natural gas, with carbon neutrality assured thanks to bio-gas certificates.

Audi 435
article thumbnail

SOLAR-JET project demonstrates solar-driven thermochemical conversion of CO2 and water to jet fuel

Green Car Congress

SOLAR-JET concentrated thermochemical reactor. The EU-funded SOLAR-JET project has demonstrated the production of aviation kerosene from concentrated sunlight, CO 2 captured from air, and water. The solar reactor consists of a cavity-receiver containing a porous monolithic ceria cylinder. Click to enlarge.

Solar 268
article thumbnail

Lufthansa, ETH Zürich, Climeworks & Synhelion to cooperate on Sustainable Aviation Fuels; CO2 capture & solar thermochemical conversion

Green Car Congress

The researchers and engineers at ETH Zurich have developed innovative processes that make it possible to extract CO 2 from the atmosphere and, together with water and with the help of concentrated sunlight, convert it into a synthesis gas that can be used to produce jet fuel.

Solar 269
article thumbnail

RPI researchers to develop novel porous material for air capture of CO2

Green Car Congress

With the support of a grant from the Department of Energy, Miao Yu, the Priti and Mukesh Chatter ’82 Career Development Chair of Chemical and Biological Engineering at Rensselaer Polytechnic Institute, will develop a novel porous material capable of capturing even very small concentrations of CO 2 in the air and collecting the gas for further use.

CO2 305
article thumbnail

New highly efficient catalyst for photoelectrochemical CO2 reduction toward methane

Green Car Congress

The work, presented in a paper in Proceedings of the National Academy of Sciences (PNAS), offers a unique, highly efficient, and inexpensive route for solar fuels synthesis. The solar-powered catalyst is made from abundant materials and works in a configuration that could be mass-produced. 1 under air mass 1.5 —Zhou et al.

CO2 349
article thumbnail

Evonik and Siemens Energy commission pilot plant for conversion of CO2 to chemicals

Green Car Congress

Evonik and Siemens Energy commissioned a pilot plant—sponsored by the German Federal Ministry of Education and Research (BMBF)—that uses carbon dioxide and water to produce chemicals. It consists of a CO electrolyzer, developed by Siemens Energy, a water electrolyzer and the bioreactor with Evonik’s know-how.

article thumbnail

Molten carbonate electrolysis can produce a range of carbon nanomaterials, including graphene, from CO2 at high yield

Green Car Congress

In the Solar Thermal Electrochemical Process (STEP), developed by Professor Stuart Licht and his group at GWU, solar UV–visible energy is focused on a photovoltaic device that generates the electricity to drive the electrolysis, while concurrently the solar thermal energy is focused on a second system to generate heat for the electrolysis cell.

Carbon 376