Remove CO2 Remove Commercial Remove Conversion Remove Sodium
article thumbnail

UP Catalyst CO2-derived carbon nanotube electrode material boosts cycle life in Na-ion batteries

Green Car Congress

Tests conducted by Titirici Group , a multidisciplinary research team based at Imperial College London, have found that a novel carbon nanotube electrode material derived from CO 2 —produced by Estonian nanotech company UP Catalyst ( earlier post )—enhances the cyclability of sodium-ion batteries.

Carbon 366
article thumbnail

DOE awarding >$24M to 77 projects through Technology Commercialization Fund

Green Car Congress

The US Department of Energy (DOE) announced more than $24 million in funding for 77 projects supported by the Office of Technology Transitions (OTT) Technology Commercialization Fund (TCF). Commercializing 3D Printable Feedstocks for the Advanced Manufacturing of Energy Products, $300,000 MilliporeSigma, St. Louis , Mo.

article thumbnail

Researchers convert atmospheric CO2 to carbon nanofibers and nanotubes for use as anodes in Li-ion and Na-ion batteries

Green Car Congress

Researchers from George Washington University and Vanderbilt University have demonstrated the conversion of atmospheric CO 2 into carbon nanofibers (CNFs) and carbon nanotubes (CNTs) for use as high-performance anodes in both lithium-ion and sodium-ion batteries. times above that of sodium-ion batteries with graphite electrodes.

Li-ion 150
article thumbnail

Sandia progressing to demo stage with supercritical CO2 Brayton-cycle turbines; up to 50% increase in efficiency of thermal-to-electric conversion

Green Car Congress

As a result, there has been research interest in producing a commercially viable S-CO 2 Brayton-cycle turbine for power generation, especially nuclear; however, much of the work has been largely analytical. Future plans call for commercialization of the technology and development of an industrial demonstration plant at 10 MW of electricity.

article thumbnail

NSF to award up to $13M for fundamental work on sustainable production of electricity and transportation fuels

Green Car Congress

Current interest areas in sustainable energy technologies are as follows: Biomass Conversion, Biofuels & Bioenergy. Advanced systems such as lithium-air, sodium-ion, as well as lithium-ion with new cathode chemistries are appropriate.

article thumbnail

Stanford team develops efficient electrochemical cells for CO2 conversion

Green Car Congress

Scientists at Stanford University have developed electrochemical cells that convert carbon monoxide (CO) derived from CO 2 into commercially viable compounds more effectively and efficiently than existing technologies. 1 ), low cell voltages, and high single-pass CO conversion, leading directly to concentrated product streams.