This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers hope to capture this energy and use it to produce clean, zero-carbon electricity. The pursuit of energy production through nuclear fusion is considered by many to be the holy grail of clean energy. PPPL’s new reactor is the first stellarator built at this government lab in 50 years.
Scaling silicon battery production is the main hurdlealthough silicon is abundantly available, expanding the manufacturing infrastructure to meet global demand will take years or even decades. The companys manufacturing process consists of two main steps: creating a carbon scaffold and exposing that scaffold to silane for silicon deposition.
Emerson will deliver advanced automation technologies, software and products to enable BayoTech to build hundreds of hydrogen units. BayoTech’s patented technology requires less feedstock, which means fewer carbon emissions and less cost to produce hydrogen than traditional reformers, the company says.
Heliogen and Bloom Energy have successfully demonstrated the production of green hydrogen by integrating the companies’ technologies: Heliogen’s concentrated solar energy system and the Bloom Electrolyzer. Electricity accounts for nearly 80% of the cost of hydrogen from electrolysis. Source: Heliogen. Source: Heliogen.
Canada-based Aurora Hydrogen, a company developing emission-free hydrogen production technology, has raised $10 million in Series A funding led by Energy Innovation Capital. There is an accompanying need to develop new low-cost and low-carbon technologies for hydrogen production.
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbon hydrogen production. HyNet – lowcarbon hydrogen plant. Contract value: £3.12 million (US$4.1
Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). The process is constrained by the (low) cost of electricity. —Johnson et al.
Canada-based Carbon Engineering Ltd. (CE) CE) has received equity investment from two global energy companies: Oxy LowCarbon Ventures, LLC (OLCV), a subsidiary of Occidental Petroleum Corporation; and Chevron Technology Ventures (CTV), the venture capital arm of Chevron Corporation. since 2015.
The VEGAN features an extremely durable lightweight reinforced aluminum (6061-T6) chassis that weighs under 31 kg and a reinforced fiberglass body with carbon fiber ribs that weighs under 23 kg. Production will be in different manufacuring hubs in Pakistan. The fully concealed cabin offers protection from all external elements.
has developed a proprietary catalytic process that transforms low-cost commercially available, or even waste by-product, renewable alcohols into renewable isoprene that would be expected to compete head-to-head on price with natural and petroleum-based chemical equivalents while reducing CO 2 emissions.
million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. A well-established downstream syngas-to-synfuel conversion process, such as Fischer-Tropsch synthesis, converts the syngas to liquid synfuel for a total projected cost of less than $4/gallon.
Methane derived from CO 2 and renewable H 2 sources is an attractive fuel, and it has great potential as a renewable hydrogen carrier as an environmentally responsible carbon capture and utilization approach. —Heldebrant et al. Different methods for converting CO 2 into methane have long been known.
AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulfuric acid. First, scalability: AQDS contains only the Earth-abundant atoms carbon, sulphur, hydrogen and oxygen, and can be inexpensively manufactured on large scales. —ARPA-E Program Director John Lemmon.
These project teams will pursue methods to create high-value carbon and hydrogen from methane (four projects, $14.4 million), or to produce super strong, durable concrete with lower cost and environmental impact (3 projects, $6.1 High Value, Energy Saving CarbonProducts and Clean Hydrogen Gas from Methane, $3,479,624.
Start-up Power Japan Plus announced plans to commercialize a dual-carbon battery technology, which it calls the Ryden dual carbon battery. Dual-carbon (also called dual-graphite) batteries were first introduced by McCullough and his colleagues at Dow Chemical in a 1989 patent, and were subsequently studied by Carlin et al.
Researchers at the Korea Institute of Science and Technology (KIST) have developed a steam-carrier-adopted composite membrane reactor system to produce pure H 2 (>99.99%) from ammonia with high productivity (>0.35 Membrane reactor for production of H 2 from NH 3. mol-H 2 g cat ?1 Credit: KIST. 2020.118483.
Group14 Technologies, a provider of silicon-carbon composite materials for global lithium-ion markets, announced that it has been selected as a winner of the Department Of Energy’s Energy Storage Grand Challenge and will receive a $3.96-million million award.
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The carbon dioxide can then be permanently stored or used in various products or applications. The biochar is rich in carbon and can be used as a fertilizer. Cambridge Carbon Capture Ltd.,
However, regulations, market design and the costs of power and electrolyzer production are still major barriers to the uptake of green hydrogen, the IRENA report says. Today, green hydrogen is 2-3 times more expensive than “blue” hydrogen, produced from fossil fuels in combination with carbon capture and storage (CCS).
IperionX Limited has agreed a Scope of Work (SoW) for the supply of titanium metal components for Ford Motor Company using IperionX’s 100% recycled, low-carbon titanium metal. This Ford SoW follows a detailed program of quality and strength testing of IperionX’s low-carbon, circular titanium metal.
A team from the University of Calgary and Rice University has used flash joule heating (FJH) ( earlier post ) to convert low-value asphaltenes—a by-product of crude oil refining—into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG). Flash graphene from asphaltenes. (A) —Saadi et al.
to pursue opportunities in large-scale, low-cost and permanent carbon capture and storage (CCS). Importantly, FPX will have the right to use any intellectual property developed by CO 2 Lock, further raising the potential for development of a low- or zero-carbon nickel mining operation at Decar. FPX Nickel Corp.,
It can reduce both carbon and local emissions, increase energy security and strengthen the economy, as well as support the deployment of renewable power generation such as wind, solar, nuclear and hydro. For US transport, hydrogen is a strong low-carbon alternative. Demand potential across sectors, base and ambitious cases.
Researchers from the Karlsruhe Institute of Technology (KIT) and their Canadian partners have designed a low-cost photoreactor design for solar-driven synthesis. The photoreactors have a low level of complexity, are readily manufacturable via mass fabrication techniques in polymers, and are easy to adapt to diverse photocatalysts.
FREYR is targeting the development of more than 40 GWh of scalable, modular battery cell production capacity via a phased development approach utilizing deep partnership-based strategies, including in-licensing of next generation technologies. —Tom Jensen, the CEO of FREYR. FREYR will pay both upfront and running fees to 24M.
jointly announced that, toward the achievement of carbon neutrality, they will take on the challenge of expanding fuel options through the use of internal combustion engines at the (three-hour) Super Taikyu Race in Okayama on 13-14 November. Participating in races using carbon-neutral fuels. Kawasaki Heavy Industries, Ltd.,
Researchers at the Université de Sherbrooke, Canada, with colleagues at the Université de Toulouse, France, have developed a process for the direct production of levulinates from cheap residual lignocellulosic biomass using an affordable homogeneous catalyst. This optimization led to a total production of levulinates of 78 wt%, 72.5
Stuart Licht reports that the addition of carbon nanotubes (CNTs) produced from CO 2 by low-energy C2CNT (CO 2 to CNT) molten electrolysis ( earlier post ) to materials such as concrete or steel not only forms composites with significantly better properties, but amplifies the reduction of CO 2. A) Carbon mitigation with CNT-cement. (B)
million in funding for 12 projects as part of Phase 1 of the Advanced Research Projects Agency-Energy’s (ARPA-E’s) FLExible Carbon Capture and Storage (FLECCS) program. Synergistic Heat Pumped Thermal Storage and Flexible Carbon Capture System - $1,000,000. The team’s approach uses a novel and low-cost heat-pump thermal storage system.
A team at Imperial College London has examined the relative costs of carbon mitigation from a lifecycle perspective for 12 different hydrogen production techniques using fossil fuels, nuclear energy and renewable sources. Proportional reduction in emissions against percentage cost increase relative to SMR.
Rice University researchers have created an efficient, low-cost device that splits water to produce hydrogen fuel. Jia has replaced the more expensive components, like platinum, in perovskite solar cells with alternatives like carbon. That lowers the entry barrier for commercial adoption. 9b09053.
Carbon Clean, a developer of low-costcarbon capture technology, has entered into an agreement with power-to-fuels developer Liquid Wind. Carbon Clean’s technology will capture biogenic carbon dioxide emissions from a local industrial site. The partnership has ambitions for future sites.
Researchers at Toyohashi University of Technology in Japan have developed an active sulfur material and carbon nanofiber (S-CNF) composite material for all-solid-state Li-sulfur batteries using a low-cost and straightforward liquid phase process. 600 mA h g –1 S was maintained at 1C (1.77 mA cm –2 ). —Phuc et al.
LeMond Carbon announced the results of an independent technical audit conducted by Bureau Veritas (BV) of its carbon fiber manufacturing process. The audit was conducted on a pilot line at Deakin University’s Carbon Nexus facility in Geelong, Australia. From Bureau Veritas audit of LeMond’s carbon fiber manufacturing process.
in 2007, Fulcrum has developed a proprietary thermochemical process to convert the organic materials found in MSW to low-carbon drop-in fuels, which can be distributed in the same pipelines as traditional petroleum products. Founded in Pleasanton, Calif.,
Westinghouse Electric Company and Bloom Energy Corporation have entered into a Letter of Intent to pursue clean hydrogen production in the commercial nuclear power market. Solid oxide technology is well suited for nuclear applications, efficiently harnessing steam to further improve the economics of hydrogen production.
Hyzon Motors, a supplier of hydrogen-powered fuel cell electric vehicles,and TC Energy Corporation will collaborate on development, construction, operation, and ownership of hydrogen production facilities (hubs) across North America. —Corey Hessen, TC Energy’s Senior Vice President and President, Power and Storage.
Methane, the key component in natural gas, is usually just burned for heat, combining with oxygen in the atmosphere to form carbon dioxide, the predominant greenhouse gas. Oxidation of methane also introduces impurities in the product stream. To avoid these undesirable outcomes, methane must be broken down without oxygen.
The composite blocks can be made from low-cost and locally sourced materials, including the excavated soil at the construction site, but can also utilize waste materials such as mine tailings, coal combustion residuals (coal ash), and fiberglass from decommissioned wind turbine blades. barrel per ton of feedstock.
78.09% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and small amounts of other gases) added—it is actually evacuated from the process so there is zero combustion inside the rotary reformer. Raven can also add small amounts of CO 2 to adjust the H 2 /CO ratio in the process that is needed for FT fuel production.
The focus of the research project “MaSSiF – Material Innovations for Solid-State Sulfur-Silicon Batteries” is the design, construction and evaluation of lightweight and low-cost sulfur-based prototype cells with high storage capacities. The German Federal Ministry of Education and Research (BMBF) is providing nearly €2.9
SOECs can be used for direct electrochemical conversion of steam (H 2 O), carbon dioxide (CO 2 ), or both into hydrogen (H 2 ), carbon monoxide (CO), or syngas (H 2 +CO), respectively. The SOEC is mainly built of abundant and low-cost ceramic materials in a metal housing. E tn , thermoneutral potential. Hauch et al.
Saratoga Energy has won a National Science Foundation grant to scale up its breakthrough process for generating low-cost, top quality carbon nanotubes from carbon dioxide for use in making high-performance Li-ion batteries, such as those used in electric vehicles, grid storage, and military and aerospace applications.
The new funds will be used to scale-up manufacturing of a next-generation silicon-carbon composite anode material and advance into commercial production. Group14 Technologies—a 2016 spin-off from EnerG2—derives its name from the Periodic Table column listing both silicon and carbon (the carbon group).
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content