Remove Battery Remove Electrical Remove Ni-Li Remove Recharge
article thumbnail

Researchers in China develop high-voltage-resistant electrolyte for ultrahigh voltage Li metal batteries

Green Car Congress

Researchers in China have developed a high-voltage-resistant (HV electrolyte) for use in ultrahigh-voltage lithium metal batteries. As reported in an open-access paper in the RSC journal Energy & Environmental Science , Li||LiNi 0.8 Li||NCM811 cells with a thin (50 ?m) ion batteries (LIBs), although it is challenging.

Ni-Li 170
article thumbnail

New aqueous rechargeable lithium battery shows good safety, high reliability, high energy density and low cost; another post Li-ion alternative

Green Car Congress

Schematic illustration of the aqueous rechargeable lithium battery (ARLB) using the coated lithium metal as anode, LiMn 2 O 4 as cathode and 0.5 mol l -1 Li 2 SO 4 aqueous solution as electrolyte. mol l -1 Li 2 SO 4 aqueous solution as electrolyte, an ARLB is built up. Wang et al. Click to enlarge. —Wang et al.

Li-ion 281
article thumbnail

AIST researchers synthesize new class of high-voltage, high-capacity cathode materials for Li-ion batteries

Green Car Congress

Researchers at Japan’s National Institute of Advanced Industrial Science and Technology (AIST) have developed a new class of contenders for high-voltage and high-capacity Li-ion cathode materials with the composition Na x Li 0.7-x x Ni 1-y Mn y O 2 (0.03. One of the compositions—Na 0.093 Li 0.57 However, O3-Li 0.7

Li-ion 150
article thumbnail

ANL team develops new class of Li- and Na- rechargeable batteries based on selenium and selenium-sulfur; greater volumetric energy densities than sulfur-based batteries

Green Car Congress

Cycling performance of Li/SeS 2 ?C, Researchers at Argonne National Laboratory have developed selenium and selenium–sulfur (Se x S y )-based cathode materials for a new class of room-temperature lithium and sodium batteries. Unlike the widely studied Li/S system, both Se and Se x S y can be cycled to high voltages (up to 4.6

Recharge 220
article thumbnail

New prelithiation technique for silicon monoxide anodes for high-performance batteries; compatible with current roll-to-roll manufacturing

Green Car Congress

Researchers from the Korea Advanced Institute of Science and Technology (KAIST), with colleagues from the Korea Institute of Energy Research (KIER), Qatar University and major battery manufacturer LG Chem have developed a technique for the delicately controlled prelithiation of SiO x anodes for high-performance Li-ion batteries.

Ni-Li 150
article thumbnail

RIKEN team develops high-performance lithium-iodine battery system with higher energy density than conventional Li-ion

Green Car Congress

The working concept of I3 – /I – redox reaction in the aqueous Li-I 2 battery. A team from Japan’s RIKEN, led by Hye Ryung Byon, has developed a lithium-iodine (Li-I 2 ) battery system with a significantly higher energy density than conventional lithium-ion batteries. Zhao et al. Click to enlarge.

Li-ion 255
article thumbnail

Researchers call for integration of materials sustainability into battery research; the need for in situ monitoring

Green Car Congress

In a review paper in the journal Nature Materials , Jean-Marie Tarascon (Professor at College de France and Director of RS2E, French Network on Electrochemical Energy Storage) and Clare Gray (Professor at the University of Cambridge), call for integrating the sustainability of battery materials into the R&D efforts to improve rechargeable batteries.

Li-ion 150