Remove Battery Remove Charging Remove International Remove Ni-Li
article thumbnail

Argonne team develops new approach to cobalt-free Li-ion cathodes

Green Car Congress

Researchers at Argonne National Laboratory have developed a new approach to cobalt-free Li-ion cathodes that avoids some of the problems with other low-cobalt cathode approaches. Mn is abundant, environmentally benign, and less conductive, while Co has limited abundance, is relatively toxic, and becomes metallic on charging.

Li-ion 255
article thumbnail

Researchers discover how nickel may inhibit charge/discharge rate in Li-ion batteries

Green Car Congress

Simulated zone projection image based on LMNO crystal model with 20% Ni/Li disorder corresponding to blue rectangle. Simulated zone projection image based on LMNO crystal model with 10% Ni/Li disorder corresponding to white rectangle. For example, a layered composite based on lithium nickel manganese oxide Li 1.2

Li-ion 274
article thumbnail

Binder-free 3D silicon-nickel electrodes for Li-ion batteries show high capacity and cycling stability

Green Car Congress

Cycling characteristics of 700 nm 3D(Si,Ni) at 1C showing a reversible specific capacity of 1,650 mAh/g after 120 cycles of charge/discharge. A 700 nm 3D(Si,Ni) material at 1C showing a reversible specific capacity of 1650 mAh/g after 120 cycles of charge/discharge. Credit: ACS, Gowda et al. Click to enlarge.

Li-ion 231
article thumbnail

New Mn-rich high-capacity mixed oxide cathode material for Li-ion batteries

Green Car Congress

Researchers in South Korea report the synthesis of high capacity Mn-rich mixed oxide cathode materials for Li-ion batteries. Novel cathode active materials, Li[Li x (Ni 0.3 The newly Mn-rich cathode active materials were then adopted as cathodes to show the benefits for Li-ion rechargeable batteries.

Li-ion 236
article thumbnail

ARPA-E awarding $39M to 16 projects to grow the domestic critical minerals supply chain

Green Car Congress

The University of Texas at Arlington will develop acoustic stimulation and electrolytic proton production to produce lithium (Li) and nickel (Ni) from CO 2 -reactive minerals and rocks that contain calcium (Ca) and magnesium (Mg), while sequestering CO 2 in the form of carbonate solids. Travertine Technologies.

Supplies 345
article thumbnail

RIKEN team develops high-performance lithium-iodine battery system with higher energy density than conventional Li-ion

Green Car Congress

The working concept of I3 – /I – redox reaction in the aqueous Li-I 2 battery. A team from Japan’s RIKEN, led by Hye Ryung Byon, has developed a lithium-iodine (Li-I 2 ) battery system with a significantly higher energy density than conventional lithium-ion batteries. Zhao et al. Click to enlarge.

Li-ion 255
article thumbnail

Beijing, Argonne researchers develop new solid-state Li-ion battery; glassy nanocomposite electrolyte with ILs

Green Car Congress

In … solid-state LIBs [lithium-ion batteries], one important component that needs to be improved to make it more suitable for high performance applications is the electrolyte material. Such solid composite electrolytes also have been previously shown to reduce lithium dendrite formation and proliferation in lithium metal batteries.

Li-ion 150