Remove Batteries Remove Energy Storage Remove Recharge Remove Sodium
article thumbnail

PNNL team develops electrolyte for high-voltage sodium-ion battery with extended longevity

Green Car Congress

Cheap and abundant, sodium is a promising candidate for new battery technology. However, the limited performance of sodium-ion batteries has hindered large-scale application. A paper on the work appears in Nature Energy. V—higher than most sodium-ion batteries previously reported.

Sodium 334
article thumbnail

New solid-electrolyte interphase may boost prospects for rechargeable Li-metal batteries

Green Car Congress

Rechargeable lithium metal batteries with increased energy density, performance, and safety may be possible with a newly-developed, solid-electrolyte interphase (SEI), according to Penn State researchers. This layer is very important and is naturally formed by the reaction between the lithium and the electrolyte in the battery.

Recharge 305
article thumbnail

Cal Energy Commission awards $3.75M to early-stage clean energy projects; 9 battery projects

Green Car Congress

The California Energy Commission awarded $3.75 million to 25 early-stage, innovative projects as part of a portfolio of research investments intended to help achieve the state’s climate and clean energy goals. nine battery-related efforts. EnZinc : Safe, high performance rechargeable zinc battery.

Clean 249
article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.

Sodium 186
article thumbnail

Researchers show that layered calcium transition metal oxides can be promising cathode materials for Ca-ion batteries

Green Car Congress

Out of several candidates that could replace Li in rechargeable batteries, calcium (Ca) stands out as a promising metal. Not only is Ca 10,000 times more abundant than Li, but it can also yield—in theory—similar battery performance. —Prof. Haesun Park, Chung-Ang University, co-corresponding author.

Ni-Li 302
article thumbnail

U Waterloo team identifies key reaction in sodium-air batteries; implications for improving Li-air

Green Car Congress

Chemists at the University of Waterloo have identified the key reaction that takes place in sodium-air batteries. Understanding how sodium-oxygen batteries work has implications for developing the more powerful lithium-oxygen battery, which has been proposed by some as the “holy grail” of electrochemical energy storage.

Sodium 150
article thumbnail

New high energy, highly stable cathode for sodium-ion batteries

Green Car Congress

Researchers in South Korea have developed a novel high-energy cathode material, Na 1.5 F 0.7 , for sodium-ion (Na-ion) batteries (NIBs). This new material provides an energy density of 600 Wh kg –1 , the highest value among Na-ion cathodes. In a prior study, they developed a new Li-ion battery electrode—Li 1.1

Sodium 292