article thumbnail

New smelting reduction process to recover Co, Ni, Mn, and Li simultaneously from Li-ion batteries

Green Car Congress

A team from metals research institute SWERIM in Sweden reports on a smelting reduction process to recover cobalt, nickel, manganese and lithium simultaneously from spent Li-ion batteries. The absence of a slag allows a nearly 100% recovery of Co, Ni, and Mn in the formed alloy and a nearly 100% recovery of lithium in the flue dust.

Ni-Li 321
article thumbnail

Fluorine-incorporated interface enhances cycling stability of Li metal batteries with Ni-rich NCM cathodes

Green Car Congress

The electrolyte evenly formed a protective film on the negative electrode and the positive electrode of the lithium metal battery, increasing the lifespan and output of the entire battery. Li/Li + ). O 2 full cell, with a high Coulombic efficiency of 99.98% after 100 cycles at 25 °C. —Lee et al. —Lee et al.

Ni-Li 357
article thumbnail

MIT electrolyte enables ultra-high voltage Ni-rich cathodes in Li-metal batteries

Green Car Congress

V in lithium-metal batteries (LMBs). The electrolyte not only suppresses side reactions, stress-corrosion cracking, transition-metal dissolution and impedance growth on the cathode side, but also enables highly reversible Li metal stripping and plating on the lithium-metal anode (LMA), leading to a compact morphology and low pulverization.

Ni-Li 284
article thumbnail

Researchers in Korea propose graphene/Ni foam as Li metal storage medium for advanced batteries

Green Car Congress

Researchers in Korea have developed three-dimensional monolithic corrugated graphene on nickel foam electrode as a Li metal storage framework in carbonate electrolytes. Therefore, hybrid engineering to prevent dendritic Li growth and increase the coulombic efficiency in highly reactive electrolytes is essential. —Kang et al.

Ni-Li 375
article thumbnail

Researchers designs new deep eutectic solvent to recover valuable elements from spent LNCM batteries

Green Car Congress

A team from Central South University in China has developed a new type of deep eutectic solvent (DES) that can efficiently leach metal elements from spent Ni-Co-Mn lithium-ion batteries (LNCM). The leaching rates of Ni, Co, Mn, and Li can all reach 99% under the conditions of T=140°C, t=10 min and no reductant.

Ni-Li 284
article thumbnail

Direct electro-oxidation method for lithium leaching from spent ternary Li-ion batteries

Green Car Congress

Researchers from Nanchang Hangkong University in China have developed a direct electro-oxidation method for lithium leaching from spent ternary lithium-ion batteries (T-LIBs) (Li 0.8 In a paper in the ACS journal Environmental Science & Technology they report that 95.02% of Li in the spent T-LIBs was leached under 2.5

Li-ion 195
article thumbnail

New self-purifying electrolyte for high-energy Li-ion batteries

Green Car Congress

A research team in China has developed a new type of electrolyte for high-energy Li-ion batteries with a self-purifying feature that opens a promising approach for electrolyte engineering for next-generation high-energy Li-ion batteries. Electrochemical performance of Li||NMC811 half-cells using different electrolytes. (a)

Li-ion 370